Research Overview

Research Application Overview

Voltage-sensitive dyes (VSDs) are small molecules that convert the tiny changes in voltage inside cells to visible changes in fluorescence, which can be recorded with a microscope. They are an important tool for researchers who need to measure electrical signaling in cells for several main purposes:

  • Neuro: Neuroscience researchers studying neurological disorders such as Alzheimer’s or Autism.
  • Cardiac: Cardiac researchers studying conditions such as Arrythmogenic Cardiomyopathy.
  • High-throughput: Drug developers who need to test efficacy or safety of new compounds under development for possible therapeutic use.

Currently, voltage-sensitive dyes are used in many preparations for research purposes only: from single cells and cell culture to in-vivo animal studies. See literature below.

Ultimately, voltage-sensitive dyes may find clinical use to detect neurological or cardiac disorders in human patients.

Optical Electrophysiology

Voltage-sensitive dyes must be combined with appropriate microscopy or optical/imaging techniques. This approach can be thought of as “optical electrophysiology”, complementing or extending classical electrophysiology using glass electrodes. Founders of Potentiometric Probes have extensive experience with both dye chemistry and imaging techniques.

Corey Acker PhD discussed voltage-sensitive dye technology and imaging techniques at the Novel Optics-Based Approaches to Cardiac Electrophysiology (NOtiCE) conference in Florence, Italy on September 21, 2018.

Voltage-Sensitive Dye Literature

Review Articles

  1. Herron, T. J., P. Lee, and J. Jalife. 2012. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110(4):609-623. Pubmed
  2. Peterka, D. S., H. Takahashi, and R. Yuste. 2011. Imaging voltage in neurons. Neuron 69(1):9-21. Pubmed
  3. Loew, L. M. 2015. Design and Use of Organic Voltage Sensitive Dyes. Adv Exp Med Biol 859:27-53. Pubmed

Cardiac Highlights

  1. Crocini, C., R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, F. S. Pavone, and L. Sacconi. 2014. Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci U S A 111(42):15196-15201. Pubmed
  2. Lee, P., C. Bollensdorff, T. A. Quinn, J. P. Wuskell, L. M. Loew, and P. Kohl. 2011. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm 8(9):1482-1491. Pubmed

Neuro Highlights

  1. Acker, C. D., E. Hoyos, and L. M. Loew. 2016. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons. eNeuro 3(2). Pubmed
  2. Rowan, M. J., E. Tranquil, and J. M. Christie. 2014. Distinct kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 34(19):6611-6623. Pubmed

High Throughput

  1. Hortigon-Vinagre, M. P., V. Zamora, F. L. Burton, J. Green, G. A. Gintant, and G. L. Smith. 2016. The Use of Ratiometric Fluorescence Measurements of the Voltage Sensitive Dye Di-4-ANEPPS to Examine Action Potential Characteristics and Drug Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicol Sci 154(2):320-331. Pubmed
  2. Blinova, K., J. Stohlman, J. Vicente, D. Chan, L. Johannesen, M. P. Hortigon-Vinagre, V. Zamora, G. Smith, W. J. Crumb, L. Pang, B. Lyn-Cook, J. Ross, M. Brock, S. Chvatal, D. Millard, L. Galeotti, N. Stockbridge, and D. G. Strauss. 2017. Comprehensive Translational Assessment of Human-Induced Pluripotent Stem Cell Derived Cardiomyocytes for Evaluating Drug-Induced Arrhythmias. Toxicol Sci 155(1):234-247. Pubmed

Fluorinated VSDs

  1. Acker, C. D., E. Hoyos, and L. M. Loew. 2016. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons. eNeuro 3(2). Pubmed
  2. Crocini, C., R. Coppini, C. Ferrantini, P. Yan, L. M. Loew, C. Tesi, E. Cerbai, C. Poggesi, F. S. Pavone, and L. Sacconi. 2014. Defects in T-tubular electrical activity underlie local alterations of calcium release in heart failure. Proc Natl Acad Sci U S A 111(42):15196-15201. Pubmed
  3. Yan, P., C. D. Acker, W. L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew. 2012. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proceedings of the National Academy of Sciences of the United States of America 109(50):20443-20448. Pubmed
  4. Rowan, M. J., E. Tranquil, and J. M. Christie. 2014. Distinct kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 34(19):6611-6623. Pubmed

Long Wavelength VSDs

  1. Zhou, W. L., P. Yan, J. P. Wuskell, L. M. Loew, and S. D. Antic. 2007. Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites. J Neurosci Methods 164(2):225-239. Pubmed
  2. Warren, M., K. W. Spitzer, B. W. Steadman, T. D. Rees, P. Venable, T. Taylor, J. Shibayama, P. Yan, J. P. Wuskell, L. M. Loew, and A. V. Zaitsev. 2010. High-precision recording of the action potential in isolated cardiomyocytes using the near-infrared fluorescent dye di-4-ANBDQBS. Am J Physiol Heart Circ Physiol 299(4):H1271-1281. Pubmed
  3. Matiukas, A., B. G. Mitrea, M. Qin, A. M. Pertsov, A. G. Shvedko, M. D. Warren, A. V. Zaitsev, J. P. Wuskell, M. D. Wei, J. Watras, and L. M. Loew. 2007. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4(11):1441-1451. Pubmed
  4. Lee, P., C. Bollensdorff, T. A. Quinn, J. P. Wuskell, L. M. Loew, and P. Kohl. 2011. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm 8(9):1482-1491. Pubmed

Di-4-ANEPPS Classic Papers

  1. Bachtel, A. D., R. A. Gray, J. M. Stohlman, E. B. Bourgeois, A. E. Pollard, and J. M. Rogers. 2011. A novel approach to dual excitation ratiometric optical mapping of cardiac action potentials with di-4-ANEPPS using pulsed LED excitation. IEEE Trans Biomed Eng 58(7):2120-2126. Pubmed
  2. Fluhler, E., V. G. Burnham, and L. M. Loew. 1985. Spectra, membrane binding, and potentiometric responses of new charge shift probes. Biochemistry 24(21):5749-5755. Pubmed
  3. Montana, V., D. L. Farkas, and L. M. Loew. 1989. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry 28(11):4536-4539. Pubmed
  4. Loew, L. M., L. B. Cohen, J. Dix, E. N. Fluhler, V. Montana, G. Salama, and J. Y. Wu. 1992. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol 130(1):1-10. Pubmed