Cardiac Research

Voltage-sensitive dyes for cardiac research

Voltage-sensitive dyes are currently used for cardiac research from single-cell to whole-heart applications (Video provided by Peter Lee, Essel R&D). Similar to neuro applications , sensitivity, staining, brightness, response dynamics are among the chief considerations in choosing the best dye for a given application. Potentiometric Probes produces several dyes that have been used successfully for diverse cardiac applications. Dyes have diverse spectral properties including far red-shifted dyes and Potentiometric Probes can help you select the best dye for your cell, tissue, or whole-organ assay and preferred imaging modality.

Corey Acker PhD, co-founder of Potentiometric Probes, recently discussed voltage-sensitive dye technology and imaging techniques at the first Novel Optics-Based Approaches to Cardiac Electrophysiology (NOtiCE) workshop in Florence, Italy on September 21, 2018.

Key products and applications

Di-4-ANEPPS along with Di-8-ANEPPS are classic voltage-sensitive dyes with rapid response kinetics that have been used for cardiac recordings for decades (2, 5). Although limited by sensitivity, dyes of this kind can provide excellent signal-to-noise based on brightness and photostability. Additionally, ratiometric techniques (1, 3, 5) may be employed for artifact removal such as slow bleaching or rapid movement artifacts. More recently, fluorinated dyes such as Di-4-AN(F)EPPTEA  and Di-4-AN(F)EP(F)PTEA  were developed  for improved signal-to-noise and these patented  dyes promise to take over from the classic dyes as the new work horses of voltage imaging.

Long wavelength dyes such as Di-4-ANBDQBS and Di-4-ANBDQPQ (4) were developed for improved sensitivity and spectral compatibility with blood infused, whole-heart preparations. Impressive research using this patented technology  shows electrical activity of the heart in a striking, highly detailed, real-time view. These experiments point to potential future clinical applications of voltage-imaging in the heart. Potentiometric Probes is working with Cytocybernetics to supply these dyes, develop novel assays for their use, and work on further improvements.


  1. Herron, T. J., P. Lee, and J. Jalife. 2012. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res 110(4):609-623. Pubmed
  2. Loew, L. M., L. B. Cohen, J. Dix, E. N. Fluhler, V. Montana, G. Salama, and J. Y. Wu. 1992. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol 130(1):1-10. Pubmed
  3. Lee, P., C. Bollensdorff, T. A. Quinn, J. P. Wuskell, L. M. Loew, and P. Kohl. 2011. Single-sensor system for spatially resolved, continuous, and multiparametric optical mapping of cardiac tissue. Heart Rhythm 8(9):1482-1491. Pubmed
  4. Matiukas, A., B. G. Mitrea, M. Qin, A. M. Pertsov, A. G. Shvedko, M. D. Warren, A. V. Zaitsev, J. P. Wuskell, M. D. Wei, J. Watras, and L. M. Loew. 2007. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4(11):1441-1451. Pubmed
  5. Montana, V., D. L. Farkas, and L. M. Loew. 1989. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry 28(11):4536-4539. Pubmed