Palette of fluorinated voltage sensitive dyes from Potentiometric Probes

Overview of Voltage-Sensitive Dyes from Potentiometric Probes

Dyes such as Di-4-ANEPPS  and Di-4-AN(F)EPPTEA  fluoresce when bound to cell membranes. These fast-response probes change their fluorescence properties in response to changes in the surrounding electric field allowing an optical readout of transmembrane potential. The response is fast enough to detect transient (millisecond) potential changes in excitable cells, including single neurons, cardiac cells, even intact brains and hearts (see citations). Although the magnitude of their potential-dependent fluorescence change is often small (2–10% fluorescence change per 100 mV), excellent signal-to-noise can still be obtained thanks to bright and highly stable fluorescence. Fluorination was introduced as a way to improve photostability, which allows stronger excitation and less photobleaching. At the same time, fluorination allows spectra to be fine tuned, providing flexibility for integration with other fluorescent probes/labels.

Stark-shift electrochromic dye molecules are comprised of 3 main components: the fluorophore, polar head group, and membrane binding motif. Several variations of dyes based on a common fluorphore backbone are made by changing the polar head group, and lipophilic membrane binding domain. This is can be thought of as a toolkit to modify solubility/membrane binding properties, fine tune spectral properties, etc. Fluorination is a final modification that improves photostability and shifts spectra producing a “palette” of voltage-sensitive dyes as shown above.

While general information about dye properties can be found here, contact Potentiometric Probes for recommendations of the best dye for your specific application and imaging modality.

The two main backbones are:

ANEP: (AminoNaphthylEthenylPyridinium) with a peak absorption wavelength range from 450 to 510nm.

ANBDQ: (AminoNapthylButydienylQuinolinium) red shifted to longer wavelengths, peak absorption wavelength range from 530 to >550nm.

Membrane binding motifs:

Di-4/Di-2: Describes the dye’s two membrane binding alkyl/hydrocarbon chains with 4 or 2 carbons for example. Generally speaking a longer hydrocarbon tail improves membrane binding and reduces aqueous solubility.

Dye solubility:

Dye solubility depends strongly on several factors. Dyes with a propyl-sulfonate (PS) polar head group such as Di-4-ANEPPS are not soluble in aqueous solutions whereas dyes with TEA (triethylamine) head group such as Di-2-AN(F)EPPTEA may be highly soluble in aqueous solutions.

Fluorination

Fluorine atoms can be substituted at various locations on the dye molecule. An (F) appears in the dye’s name at the location matching the fluorine’s location. For example Di-4-AN(F)EPPTEA is the same as Di-4-ANEPPTEA except with a fluorine on the naphthyl. The location dependent spectral shift results in a “palette” of VSD variants.

Choosing the best wavelength for your measurement

Most of our VSDs (with the exception of TMRE and TMRM) work via an electrochromic (aka Stark effect) mechanism, whereby the spectrum shifts in response to a change in membrane potential. Therefore, the best wavelengths for voltage sensitivity are at the wings of the spectrum rather than at the peak. We generally recommend excitation at the red edge because the red wing of the spectrum is generally steeper than the blue wing. In general, there needs to be a compromise between high fractional voltage sensitivity (Δ​F/F), achieved by red-edge excitation where the total fluorescence is low, and optimal signal to noise, achieved by excitation closer to the peak of the spectrum. Dual wavelength ratio measurements (red edge/blue edge) can also be implemented to improve the sensitivity and to normalize away uneven staining or motion artifacts.

Dye packaging and storage:

Dyes are sold as pre-aliquoted, pre-dried amounts suitable for typical assays for convenience. The tubes of dried dye can be stored easily (<4°C with desiccant, in the dark) saving the user extra steps of preparing stock solutions and removing solvents.

Dyes Available from Potentiometric Probes

Other dyes also available, please contact for more information.

Di-1-ANEPEQ

Other names: JPW3028
Recommended excitation range: 510-540 nm.
Structure of voltage-sensitive dye Di-1-ANEPEQ from Potentiometric Probes

Di-1-ANEPPQ

Structure of voltage-sensitive dye Di-1-ANEPPQ from Potentiometric Probes

Di-2-ANEPEQ

Other names: JPW1114
Recommended excitation range: 510-540 nm.
Structure of voltage-sensitive dye Di-2-ANEPEQ from Potentiometric Probes

Di-2-ANBDQPQ

Structure of voltage-sensitive dye Di-2-ANBDQPQ from Potentiometric Probes

Di-2-AN(F)EPPTEA

Other names: PY3243
Recommended excitation wavelengths: 530 nm, 1060 nm (2P).
Structure of voltage-sensitive dye Di-2-AN(F)EPPTEA from Potentiometric Probes
Spectra of voltage-sensitive dye Di-2-AN(F)EPPTEA from Potentiometric Probes

Di-3-ANEPPDHQ

Recommended excitation range: 510-530 nm.
Structure of voltage-sensitive dye Di-3-ANEPPDHQ from Potentiometric Probes

Di-4-ANEPPDHQ

Recommended excitation range: 510-530 nm.

Di-4-ANEPPS

Other names: “Di-4”
Recommended excitation range: 510-530 nm.
Structure of voltage-sensitive dye Di-4-ANEPPS from Potentiometric Probes
Spectra of voltage-sensitive dye Di-2-AN(F)EPPTEA from Potentiometric Probes

Di-4-AN(F)EPPTEA

Other names: PY3174
Recommended excitation wavelenths: 530 nm, 1060 nm (2P).
Structure of voltage-sensitive dye Di-4-AN(F)EPPTEA from Potentiometric Probes
Spectra of voltage-sensitive dye Di-4-AN(F)EPPTEA from Potentiometric Probes

Di-4-AN(F)EP(F)PTEA

Recommended excitation wavelength: 560 nm.
Structure of voltage-sensitive dye Di-4-AN(F)EP(F)PTEA from Potentiometric Probes
Spectra of voltage-sensitive dye Di-4-AN(F)EP(F)PTEA from Potentiometric Probes

Di-4-ANEP(F2)PTEA

Structure of voltage-sensitive dye Di-4-ANEP(F2)PTEA from Potentiometric Probes

Di-4-ANBDQBS

Other names: JPW6033
Recommended excitation range: 620-660 nm.
Structure of voltage-sensitive dye Di-4-ANBDQBS from Potentiometric Probes
Spectra of voltage-sensitive dye Di-4-ANBDQBS from Potentiometric Probes

Di-4-ANBDQPQ

Other names: JPW6003
Recommended excitation range: 620-660 nm.
Structure of voltage-sensitive dye Di-4-ANBDQPQ from Potentiometric Probes
Spectra of voltage-sensitive dye Di-4-ANBDQPQ from Potentiometric Probes

Di-4-ANEQ(F)PTEA

Recommended excitation range: 610-650 nm.
Structure of voltage-sensitive dye Di-4-ANEQ(F)PTEA from Potentiometric Probes
Spectra of voltage-sensitive dye Di-4-ANEQ(F)PTEA from Potentiometric Probes

Di-8-ANEPPS

Other names: “Di-8”
Recommended excitation range: 510-530 nm.
Structure of voltage-sensitive dye Di-8-ANEPPS from Potentiometric Probes

TMRE

Other names: TetraMethylRhodamine Ethyl ester

TMRM

Other names: TetraMethylRhodamine Methyl ester