Voltage-Sensitive Dyes for Neuroscience Research
Voltage-sensitive dyes are currently used to study diverse, fundamental questions in neuroscience research using a large variety of cell, tissue, and whole animal assays (3). Dye selection and details of imaging techniques contribute to the overall signal-to-noise obtained.
When selecting a voltage-sensitive dye (VSD) for neuroscience research purposes, dye sensitivity, staining, brightness, and response dynamics are among the chief considerations in choosing the best dye for a given application. Imaging techniques range from simple 1-photon epifluorescence to more advanced ratiometric and 2-photon excitation methods. 2-photon excitation may be used to record from single dendritic spines (1) or axonal boutons (2). Dyes have diverse spectral properties including red-shifted dyes.
Key Products and Applications
Di-4-ANEPPS and Di-8-ANEPPS are classic voltage-sensitive dyes with rapid response kinetics that have been used for neuronal recordings for decades (5). Although limited by sensitivity, this type of dye can provide excellent signal-to-noise based on brightness and photostability. Additionally, ratiometric techniques (4) may be employed for artifact removal such as slow bleaching or rapid movement artifacts.
Image courtesy of Peter Lee, Essel R&D
-
Acker, C. D., E. Hoyos, and L. M. Loew. 2016. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons. eNeuro 3(2). Pubmed
Rowan, M. J., E. Tranquil, and J. M. Christie. 2014. Distinct kv channel subtypes contribute to differences in spike signaling properties in the axon initial segment and presynaptic boutons of cerebellar interneurons. J Neurosci 34(19):6611-6623. Pubmed
Canepari, M., and D. Zecevic, editors. 2010. Membrane Potential Imaging in the Nervous System: Methods and Applications. Springer, New York.
Bullen, A., and P. Saggau. 1999. High-speed, random-access fluorescence microscopy: II. Fast quantitative measurements with voltage-sensitive dyes. Biophys J 76(4):2272-2287. Pubmed
Loew, L. M., L. B. Cohen, J. Dix, E. N. Fluhler, V. Montana, G. Salama, and J. Y. Wu. 1992. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol 130(1):1-10. Pubmed
Yan, P., C. D. Acker, W. L. Zhou, P. Lee, C. Bollensdorff, A. Negrean, J. Lotti, L. Sacconi, S. D. Antic, P. Kohl, H. D. Mansvelder, F. S. Pavone, and L. M. Loew. 2012. Palette of fluorinated voltage-sensitive hemicyanine dyes. Proceedings of the National Academy of Sciences of the United States of America 109(50):20443-20448. Pubmed
Matiukas, A., B. G. Mitrea, M. Qin, A. M. Pertsov, A. G. Shvedko, M. D. Warren, A. V. Zaitsev, J. P. Wuskell, M. D. Wei, J. Watras, and L. M. Loew. 2007. Near-infrared voltage-sensitive fluorescent dyes optimized for optical mapping in blood-perfused myocardium. Heart Rhythm 4(11):1441-1451. Pubmed